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As computers and the concept of artificial intelligence (AI) 
were almost simultaneously developed in the 1940s and 1950s, the field of 
medicine was quick to see their potential relevance and benefit.1,2 In 1959, 

Keeve Brodman and colleagues claimed that “the making of correct diagnostic 
interpretations of symptoms can be a process in all aspects logical and so com-
pletely defined that it can be carried out by a machine.”3 Eleven years later, William 
B. Schwartz wrote in the Journal, “Computing science will probably exert its major 
effects by augmenting and, in some cases, largely replacing the intellectual func-
tions of the physician.”4 He predicted that by the year 2000, computers would have 
an entirely new role in medicine, acting as a powerful extension of the physician’s 
intellect.

However, by the late 1970s, there was disappointment that the two main ap-
proaches to computing in medicine — rule-based systems and matching, or pat-
tern recognition, systems — had not been as successful in practice as one had 
hoped. The rule-based systems were built on the hypothesis that expert knowledge 
consists of many independent, situation-specific rules and that computers can 
simulate expert reasoning by stringing these rules together in chains of deduction. 
The matching strategies tried to match a patient’s clinical characteristics with a 
bank of “stored profiles,” which we now refer to as “illness scripts,”5 of the find-
ings in a given disease. More effort was put into understanding the clinical deci-
sion-making process itself.6 It became clear that the key deficiencies in most 
previous programs stemmed from their lack of pathophysiological knowledge. 
When such knowledge was incorporated, the performance greatly improved.

Nevertheless, in the 1980s, computers were not up to the task. The rule-based 
systems had by 1987 proved useful in a variety of commercial tasks but had not 
worked in clinical medicine. Indeed, Schwartz and colleagues noted that “the pro-
cess is so slow that it is impractical even with modern high-speed computers.”7 
They continued: “After hearing for several decades that computers will soon be able 
to assist with difficult diagnoses, the practicing physician may well wonder why the 
revolution has not occurred.”7

Pro gr ess in Data Science

In the 1950s, computers were large and slow. The first hard-disk drive was the IBM 
Model 350 Disk File, introduced in 1956. It had a total storage capacity of 5 million 
characters (just under 5 MB). The first hard drive to have more than 1 GB in capac-
ity was the IBM 3380, introduced in 1980. It was the size of a refrigerator and 
weighed 550 lb (250 kg); the price was $100,000. But integrated-circuit technology 
was improving. In 1965, Gordon Moore, cofounder of Fairchild Semiconductor and 
Intel, predicted that the number of transistors in an integrated circuit, and, hence, 
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Figure 1. Improvements over 50 Years in the Ability of Computers to Store and Process Data.

Panel A shows advances in data storage, in terms of both physical size and cost per unit of storage. RAMAC denotes random access 
method of accounting and control. Panel B shows advances in the speed of computing. Each dot represents an individual machine type 
and the approximate year of its introduction. These improvements in storage and speed have allowed machine learning to progress 
from a dream to reality. Data in both panels are estimates from many types of system architecture and are derived from multiple public 
sources.
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its potential computing power, would double ev-
ery 2 years. His prediction was right; this change 
in semiconductor density is known as Moore’s 
law. However, Moore’s law tells us more than 
the number of transistors per square centimeter, 
since other aspects of technological progress, 
such as processing speed and the price of elec-
tronic products, are strongly linked to Moore’s 
law. With more dense circuits, computer memo-
ry and computing speeds increased, and today, 
pocket-sized devices that are more powerful than 
the 1980s supercomputers, which took up entire 
rooms, are common and available at a fraction 
of the price (Fig. 1).

Progress in data science is not simply a matter 
of increased performance, speed, and storage. In 
addition to the type of information found in librar-
ies, data generated in organizations, and estab-
lished systems designed to gather and codify data, 
new forms of technology can use data that are 
both people-generated and machine-generated. 
These data are often chaotic and unstructured. 
Data now come from many additional sources, 
including social networks, blogs, chat rooms, 
product-review sites, communities, website pag-
es, email, documents, images, videos, and music, 
along with wearable and environmental sensors. 
Many people open aspects of their medical re-
cords and personal genetic data for online ac-
cess by anyone. Storage capacity is so great that 
vast portions of the corpus of recorded human 
knowledge and activity can be stored and read-
ily accessed.

Once we had the data, we needed more than 
data; we needed ways to identify and process the 
data. Google became the leader in online search-
ing by harnessing the searches performed by 
others to identify what people wanted to know. 
This required a second revolution, mathematical 
algorithms that could rapidly, and with reason-
able reliability, track this behavior and aid the 
end user in finding particular information. More 
dense information storage and faster computing 
allowed for practical, real-time solutions of math-
ematical expressions that could be used to find 
relationships in the data that were previously un-
knowable. As a result, data science could flourish 
and flex its muscles in a way that was previously 
impossible.

We are now able to use unstructured data to 
identify untold relationships among elements in 
the data, allowing the use of dynamic data and 

data with multiple contexts that, when approached 
and analyzed in nontraditional ways, provide 
actionable insights into human behavior. Neural 
networks became more sophisticated as the com-
puting power allowed functional real-time out-
put to data queries. Transformers (i.e., deep-
learning models that differentially weigh the 
importance of each part of the input data) made 
natural-language processing possible. With this 
approach, the complexities of the underlying 
computer models, and the corpus of data from 
which those models could draw, grew and be-
came more powerful. The goal of a computer that 
could emulate certain aspects of human interac-
tion went from an impossible dream to a reality.

The connectedness allowed by data science is 
driving a new kind of discovery. People are using 
social networks to draw their own connections 
between friends, things, events, likes, dislikes, 
places, ideas, and emotions. Governments are 
analyzing social networks to stop terrorist acts. 
Businesses are mining social and transactional 
information for connections that will help them 
discover new opportunities. Scientists are build-
ing massive grids of connected data to tease out 
new findings, using AI and machine learning. 
As addressed in more detail below, these advances 
have allowed the emergence of computers that 
can help you perform tasks that previously had 
been tedious. The Star Wars character C-3PO 
was a crude version of the AI-based virtual as-
sistants (e.g., Apple’s Siri, Google’s Assistant, and 
Amazon’s Alexa) that have become part of our 
daily life and can help us perform defined tasks. 
Anyone who has used one of these devices has 
experienced their convenience (e.g., instructing 
the virtual assistant to “set the oven timer for 20 
minutes” so that food is properly cooked) but 
also the annoyance of having the assistant break 
into a conversation with some unrelated facts. 
AI and machine learning constitute the driving 
force behind these devices.

A I a nd M achine Le a r ning  
in Medicine

In the 1990s and into the early 2000s, even with 
slow computers and limited memory, the problem 
of having machines successfully perform certain 
medical tasks that were repetitive, and therefore 
prone to human error, was being solved. Through 
a substantial investment of money and intellec-

The New England Journal of Medicine 
Downloaded from nejm.org on April 24, 2023. For personal use only. No other uses without permission. 

 Copyright © 2023 Massachusetts Medical Society. All rights reserved. 



n engl j med 388;13 nejm.org March 30, 20231204

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

tual effort, computer reading of electrocardio-
grams (ECGs) and white-cell differential counts, 
analysis of retinal photographs and cutaneous 
lesions, and other image-processing tasks has 
become a reality. Many of these machine-learn-
ing–aided tasks have been largely accepted and 
incorporated into the everyday practice of medi-
cine. The performance of these machine tasks is 
not perfect and often requires a skilled person to 
oversee the process, but in many cases, it is good 
enough, given the need for relatively rapid interpre-
tation of images and the lack of local expertise.

However, the use of AI and machine learning 
in medicine has expanded beyond the reading of 
medical images. AI and machine-learning pro-
grams have entered medicine in many ways, in-
cluding, but not limited to, helping to identify 
outbreaks of infectious diseases that may have an 
impact on public health; combining clinical, 
genetic, and many other laboratory outputs to 
identify rare and common conditions that might 
otherwise have escaped detection; and aiding in 
hospital business operations (Fig. 2). In the months 
to come, the Journal will publish other review 
articles that take a selective look at AI and ma-
chine learning in medicine in 2023. But before 
the first article appears, in about a month’s time, 
it is important to consider the overriding issues 
that need to be considered as we learn to work 
hand in hand with machines.

Unr esolv ed Issues in A I  a nd 
M achine Le a r ning in Medicine

Establishing Norms

As noted above, the use of AI and machine 
learning has already become accepted medical 
practice in the interpretation of some types of 
medical images, such as ECGs, plain radiographs, 
computed tomographic (CT) and magnetic reso-
nance imaging (MRI) scans, skin images, and 
retinal photographs. For these applications, AI 
and machine learning have been shown to help 
the health care provider by flagging aspects of 
images that deviate from the norm.

This suggests a key question: what is the 
norm? This simple question shows one of the 
weaknesses of the use of AI and machine learning 
in medicine as it is largely applied today. How 
does bias in the way AI and machine-learning 

algorithms were “taught” influence how they 
function when applied in the real world? How do 
we interject human values into AI and machine-
learning algorithms so that the results obtained 
reflect the real problems faced by health profes-
sionals? What issues must regulators address to 
ensure that AI and machine-learning applications 
perform as advertised in multiple-use settings? 
How should classic approaches in statistical in-
ference be modified, if at all, for interventions 
that rely on AI and machine learning? These are 
but a few of the problems that confront us; the 
“AI in Medicine” series will address some of 
these matters.

Role of AI and Machine Learning  
in Clinical Practice

Pitfalls aside, there is much promise. If AI and 
machine-learning algorithms can be reduced to 
clinically useful “apps,” will they be able to weed 
their way through mountains of clinical, ge-
nomic, metabolomic, and environmental data to 
aid in precision diagnosis? Can AI and machine-
learning–driven apps become your personal scribe 
and free up your time spent on documentation 
so that you can spend more time with patients? 
Can the apps prompt you to ask a key question 
that could help in the differential diagnosis? Can 
they outwit the AI and machine-learning algo-
rithms, used by insurance companies, that make 
it difficult for you to order a positron-emission 
tomographic–CT scan or collect reimbursement 
for the time you spent with a patient and the 
patient’s family? In each area, progress has been 
made. Is it good enough?

Clinical Research on AI and Machine-
Learning Applications

The evaluation of progress has its own set of 
problems. In traditional clinical research, when 
progress takes the form of a new drug for a de-
finable condition, the standards for testing and 
accepting the drug as an advance are well estab-
lished. When the intervention is an AI and ma-
chine-learning algorithm rather than a drug, the 
medical community expects the same level of 
surety, but the standards for describing and test-
ing AI and machine-learning interventions are 
far from clear.

What are the standards to which AI and 
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Figure 2. Spectrum of Artificial Intelligence (AI) in Medicine.

Panel A shows selected areas of public health and medicine in which AI has an established but evolving role. These tools are already 
helping medical professionals do their jobs as partners in practice. EMR denotes electronic medical record. Panel B shows areas of 
medical practice in which AI has begun to have an influence but has not yet reached the stage of common use.
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machine learning–based interventional research 
should be held, if an app is going to be accepted 
as the standard that will shape, reform, and im-
prove clinical practice? That research has three 
components. First, the research must be struc-
tured to answer a clinically meaningful question 
in a way that can influence the behavior of the 
health professional and lead to an improvement 
in outcomes for a patient. Second, the interven-
tion must be definable, scalable, and applicable 
to the problem at hand. It must not be influenced 
by factors outside the domain of the problem 
and must yield outcomes that can be applied to 
similar clinical problems across a wide range of 
populations and disease prevalences. Can AI and 
machine learning–driven care meet these stan-
dards — ones that we demand from a novel thera-
peutic intervention or laboratory-based diagnos-
tic test — or do we need to have a unique set of 
standards for this type of intervention? Third, 
when the results of the research are applied in 
such a way as to influence practice, the outcome 
must be beneficial for all patients under consid-
eration, not just those who are similar to the 
ones with characteristics and findings on which 
the algorithm was trained. This raises the ques-
tion of whether such algorithms should include 
consideration of public health (i.e., the use of 
scarce resources) when diagnostic or treatment 
recommendations are being made and the extent 
to which such considerations are part of the deci-
sion-making process of the algorithm. Such ethi-
cal considerations have engaged health profes-
sionals and the public for centuries.8

Use of AI and Machine-Learning Applications 
in Conducting Clinical Research

AI and machine learning have the potential to 
improve and possibly simplify and speed up clini-
cal trials through both more efficient recruitment 
and matching of study participants and more 
comprehensive analyses of the data. In addition, it 
may be possible to create synthetic control groups 
by matching historical data to target trial enroll-
ment criteria. AI and machine learning may also 
be used to better predict and understand possi-
ble adverse events and patient subpopulations. It 
seems possible that AI could generate “synthetic 
patients” in order to simulate diagnostic or thera-
peutic outcomes. But the use of AI and machine-
learning applications and interventions introduc-

es a set of uncertainties that must be dealt with 
both in protocols and in reporting of clinical 
trials.9,10

In this AI in Medicine series, we plan to cover 
progress, pitfalls, promise, and promulgation at 
the interface of AI and medicine. It is important 
to understand that this is a fast-moving field, 
so to some extent, what we publish may have the 
resolution of a snapshot of the landscape taken 
from a bullet train. Specifically, things happening 
in close temporal proximity to publication may be 
blurred because they are changing quickly, but 
the distant background will be in reasonably 
good focus. One area of substantial progress in 
AI and machine learning (i.e., in the foreground, 
in our snapshot analogy) is the appearance of 
sophisticated chatbots that are available for use 
by the general public. Although chatbots have only 
recently been introduced at a level of sophistica-
tion that could have an impact on daily medical 
practice, we believe that their potential to influ-
ence how medicine is practiced is substantial and 
that we would be remiss not to address that 
potential as well as possible problems related to 
their use.

Ch atbo t s in Medicine

In this issue of the Journal, an article by Lee et 
al.11 introduces the GPT-4 chatbot and its medi-
cal applications. The article was written by a team 
of researchers who work for the entities that cre-
ated GPT-4, a chatbot with a broad education that 
includes medical knowledge. Before we see the 
future, a quick look at the past will be helpful. 
A chatbot is a computer program that uses AI 
and natural-language processing to understand 
questions and automate responses to them, simu-
lating human conversation. A very early medical 
chatbot, ELIZA, was developed between 1964 and 
1966 by Joseph Weizenbaum at the Artificial In-
telligence Laboratory of the Massachusetts Insti-
tute of Technology (Fig. 3).

Chatbot technology is now almost every-
where, from customer service to personal virtual 
assistants, as noted above. With the powerful 
computers available today, language models 
have hundreds of billions of parameters, which 
can be used to generate new text. This ability, 
combined with an almost infinite amount of 
available (Internet) data with which to train the 
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Figure 3. Chatbots in Medicine.

Panel A shows a screen shot of output from a very early medical chatbot called ELIZA, which was developed by  
Joseph Weizenbaum at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology between 
1964 and 1966. Panel B (courtesy of Lee et al.11) shows input and output from the GPT-4, a chatbot that is expected 
to be introduced in 2023. BMI denotes body-mass index.

A

B

Question: 
A 12-year-old girl is brought to the emergency department by her mother because of a 1-week history 
of worsening leg swelling. The patient also noticed blood in her urine yesterday. The bleeding has not 
recurred. She had an upper respiratory tract infection and sore throat 1 week ago that caused her to 
miss several days of school. Medical history is otherwise unremarkable, and she takes no routine 
medications. Menarche has not yet occurred. BMI is 20 kg/m2. Vital signs are temperature 37.0°C 
(98.6°F), pulse 78 beats/min, respiratory rate 12 breaths/min, and blood pressure 136/84 mm Hg. Pulse 
oximetry while the patient is breathing ambient air shows an oxygen saturation of 100%. Physical 
examination shows erythema of the posterior pharynx, mild cervical lymphadenopathy, and 3+ 
pitting edema in both knees. Results of urinalysis are shown:
     Protein    150 mg/dl
     Blood    Positive
     Leukocyte esterase   Positive
     Nitrite    Negative
     White cells    5−10/high-power �eld
     Red cells    10−25/high-power �eld
                        Casts  1−2/low-power �eld
Results of which of the following laboratory studies are most likely to be abnormal in this patient? 
(A) Bleeding time
(B) Erythrocyte count
(C) Serum concentration of C3
(D) Serum IgA concentration
(E) Serum rheumatoid factor assay

The correct answer is (C) Serum concentration of C3. This patient has signs and symptoms of acute 
poststreptococcal glomerulonephritis (APSGN), a type of glomerular disease that typically occurs 1 to 
3 weeks after a streptococcal infection of the skin or pharynx. APSGN is mediated by immune 
complexes that deposit in the glomerular basement membrane and activate the complement 
pathway, leading to in�ammation, hematuria, proteinuria, and reduced glomerular �ltration rate. The 
resulting �uid retention causes hypertension and edema. The serum C3 level is usually low in APSGN, 
re�ecting complement consumption. The other laboratory studies listed are normal or not relevant in 
APSGN. Bleeding time is a measure of platelet function, which is not a�ected by APSGN. Erythrocyte 
count may be slightly elevated due to hemoconcentration, but not signi�cantly. Serum IgA 
concentration is elevated in IgA nephropathy, another type of glomerular disease that can cause 
hematuria and proteinuria, but it is not associated with streptococcal infection or low C3 level. Serum 
rheumatoid factor assay is used to diagnose rheumatoid arthritis, an autoimmune disorder that does 
not cause APSGN.
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network, means that language models can do 
more and more, as shown by the Chat Generative 
Pre-trained Transformer, or ChatGPT.

ChatGPT is a language model trained by 
OpenAI. It was introduced publicly in November 
2022 (https://openai . com/  blog/  chatgpt) and has 
demonstrated a new way in which AI-driven ma-
chines can interact with people. The new-gener-
ation chatbots hold the promise of being a scribe 
and coach, but with some key caveats. Many of 
these caveats were described by the developers of 
ChatGPT at its launch but warrant special con-
sideration when used in medicine, as detailed by 
Lee et al.11 In their current iteration, the new gen-
eration of chatbots can help with the medical 
documentation problem and answer key questions 
that could help in the differential diagnosis, as 
noted above. But it is difficult to know whether 
the answers provided are grounded in appropri-
ate fact. The onus would be on clinicians to proof-
read the work of the chatbot, just as clinicians 
need to proofread clinical notes that they dictate. 
The difficulty is that such proofreading may be 
beyond the expertise of the user. Proofreading a 
note on a patient visit is likely to be well within 
the range of the provider’s expertise, but if the 
chatbot is asked a question as a “curbside con-
sult,” the veracity of the answer may be much 
harder to determine.

The application of greatest potential and con-
cern is the use of chatbots to make diagnoses or 
recommend treatment. A user without clinical 
experience could have trouble differentiating fact 
from fiction. Both these issues are addressed in 
the article by Lee and colleagues,11 who point out 
the strengths and weaknesses of using chatbots 

in medicine. Since the authors have created one 
such entity, bias is likely.

Nevertheless, we think that chatbots will 
become important tools in the practice of medi-
cine. Like any good tool, they can help us do 
our job better, but if not used properly, they 
have the potential to do damage. Since the tools 
are new and hard to test with the use of the 
traditional methods noted above, the medical 
community will be learning how to use them, 
but learn we must. There is no question that the 
chatbots will also learn from their users. Thus, 
we anticipate a period of adaptation by both the 
user and the tool.

Conclusions

We firmly believe that the introduction of AI and 
machine learning in medicine has helped health 
professionals improve the quality of care that 
they can deliver and has the promise to improve 
it even more in the near future and beyond. Just 
as computer acquisition of radiographic images 
did away with the x-ray file room and lost images, 
AI and machine learning can transform medi-
cine. Health professionals will figure out how to 
work with AI and machine learning as we grow 
along with the technology. AI and machine learn-
ing will not put health professionals out of busi-
ness; rather, they will make it possible for health 
professionals to do their jobs better and leave 
time for the human–human interactions that 
make medicine the rewarding profession we all 
value.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.

References
1. Turing AM. Computing machinery 
and intelligence. Mind 1950; 59: 433-60.
2. Yu K-H, Beam AL, Kohane IS. Artificial 
intelligence in healthcare. Nat Biomed Eng 
2018; 2: 719-31.
3. Brodman K, Van Woerkom AJ, Erd-
mann AJ Jr, Goldstein LS. Interpretation of 
symptoms with a data-processing machine. 
AMA Arch Intern Med 1959; 103: 776-82.
4. Schwartz WB. Medicine and the com-
puter — the promise and problems of 
change. N Engl J Med 1970; 283: 1257-64.
5. Bowen JL. Educational strategies to 
promote clinical diagnostic reasoning.  
N Engl J Med 2006; 355: 2217-25.

6. Pauker SG, Gorry GA, Kassirer JP, 
Schwartz WB. Towards the simulation of 
clinical cognition: taking a present illness 
by computer. Am J Med 1976; 60: 981-96.
7. Schwartz WB, Patil RS, Szolovits P. 
Artificial intelligence in medicine. Where 
do we stand? N Engl J Med 1987; 316: 685-
8.
8. Rosenbaum L. Trolleyology and the 
dengue vaccine dilemma. N Engl J Med 
2018; 379: 305-7.
9. Liu X, Cruz Rivera S, Moher D, Cal-
vert MJ, Denniston AK;  SPIRIT-AI and 
CONSORT-AI Working Group. Reporting 
guidelines for clinical trial reports for in-

terventions involving artificial intelli-
gence: the CONSORT-AI extension. Nat 
Med 2020; 26: 1364-74.
10. Cruz Rivera S, Liu X, Chan A-W, Den-
niston AK, Calvert MJ;  SPIRIT-AI and 
CONSORT-AI Working Group. Guidelines 
for clinical trial protocols for interven-
tions involving artificial intelligence: the 
SPIRIT-AI extension. Lancet Digit Health 
2020; 2(10): e549-e560.
11. Lee P, Bubeck S, Petro J. Benefits, lim-
its, and risks of GPT-4 as an AI chatbot 
for medicine. N Engl J Med 2023; 388: 
1233-9.
Copyright © 2023 Massachusetts Medical Society.

The New England Journal of Medicine 
Downloaded from nejm.org on April 24, 2023. For personal use only. No other uses without permission. 

 Copyright © 2023 Massachusetts Medical Society. All rights reserved. 


